If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-16X+38=0
a = 1; b = -16; c = +38;
Δ = b2-4ac
Δ = -162-4·1·38
Δ = 104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{104}=\sqrt{4*26}=\sqrt{4}*\sqrt{26}=2\sqrt{26}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{26}}{2*1}=\frac{16-2\sqrt{26}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{26}}{2*1}=\frac{16+2\sqrt{26}}{2} $
| 8v-3=2 | | -60÷-x=4 | | 2p+3=16 | | 16x+13=-43-2x | | 5=-z3 | | 7m+2=14 | | 8-2b=6+10(3-4b) | | 5y=13/2 | | 38=x+85x−2 | | -60÷(-x)=4 | | 90+3x+2x+30=180 | | 74+5x+3x+2=180 | | w-5.39=2.48 | | 4^(2x+1)=18 | | y-2.83=9.7 | | 4(x—5)=92 | | 5x+11=x3+10 | | 11(x-5)+3=-30 | | 8p-40-3p-5=1 | | 2c−1=4 | | 4x+5-x+3=23 | | 6m+6-3m-3=27 | | 4x+5–x+3=23 | | 4x–3x+4=2x+2 | | x^2-x=420 | | 7x+(6x-27)=90 | | x3x+2=63 | | 4(x^2-5)=16 | | 2k−4=103k+3 | | 3y=5y-40 | | 64=-8-8d | | -2v-32=-7(v+6) |